Adaptive Image Matching Using Discrimination of Deformable Objects
نویسندگان
چکیده
We propose an efficient image-matching method for deformable-object image matching using discrimination of deformable objects and geometric similarity clustering between feature-matching pairs. A deformable transformation maintains a particular form in the whole image, despite local and irregular deformations. Therefore, the matching information is statistically analyzed to calculate the possibility of deformable transformations, and the images can be identified using the proposed method. In addition, a method for matching deformable object images is proposed, which clusters matching pairs with similar types of geometric deformations. Discrimination of deformable images showed about 90% accuracy, and the proposed deformable image-matching method showed an average 89% success rate and 91% accuracy with various transformations. Therefore, the proposed method robustly matches images, even with various kinds of deformation that can occur in them.
منابع مشابه
A non-self-intersecting adaptive deformable surface for complex boundary extraction from volumetric images
This paper proposes a non-self-intersecting multiscale deformable surface model with an adaptive remeshing capability. The model is specifically designed to extract the three-dimensional boundaries of topologically simple but geometrically complex anatomical structures, especially those with deep concavities such as the brain, from volumetric medical images. The model successfully addresses thr...
متن کاملDeformable Object Matching Algorithm Using Fast Agglomerative Binary Search Tree Clustering
Deformable objects have changeable shapes and they require a different method of matching algorithm compared to rigid objects. This paper proposes a fast and robust deformable object matching algorithm. First, robust feature points are selected using a statistical characteristic to obtain the feature points with the extraction method. Next, matching pairs are composed by the feature point match...
متن کاملA Hybrid 3D Colon Segmentation Method Using Modified Geometric Deformable Models
Introduction: Nowadays virtual colonoscopy has become a reliable and efficient method of detecting primary stages of colon cancer such as polyp detection. One of the most important and crucial stages of virtual colonoscopy is colon segmentation because an incorrect segmentation may lead to a misdiagnosis. Materials and Methods: In this work, a hybrid method based on Geometric Deformable Models...
متن کاملAn Improved Shape Matching Algorithm for Deformable Objects Using a Global Image Feature
We propose an improved shape matching algorithm that extends the work of Felzenszwalb [3]. In this approach, we use triangular meshes to represent deformable objects and use dynamic programming to find the optimal mapping from the source image to the target image which minimizes a new energy function. Our energy function includes a new cost term that takes into account the center of mass of an ...
متن کاملObject Matching Using Deformable Templates
We propose a general object localization and retrieval scheme based on object shape using deformable templates. Prior knowledge of an object shape is described by a prototype template which consists of the representative contour/edges, and a set of probabilistic deformation transformations on the template. A Bayesian scheme, which is based on this prior knowledge and the edge information in the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Symmetry
دوره 8 شماره
صفحات -
تاریخ انتشار 2016